metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(3-Aminopyrazin-4-ium-2-carboxylate- $\kappa^2 N^1$,O)diaquazinc(II) dinitrate

Shan Gao^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 6 October 2010; accepted 20 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.060; wR factor = 0.175; data-to-parameter ratio = 13.7.

The water-coordinated Zn^{II} atom in the title salt, [Zn- $(C_5H_5N_3O_2)_2(H_2O)_2$](NO₃)₂, is *N*,*O*-chelated by a zwitterionic aminopyraziniocarboxylate unit; the metal atom, which lies on a center of inversion, shows an octahedral coordination. The nitrate ion interacts indirectly, through N-H···O hydrogen bonds. In the crystal, adjacent cations and anions are connected by O-H···O hydrogen bonds into a three-dimensional network motif. The crystal studied was a non-merohedral twin with two minor components of 15.1 (1) and 8.0 (1)%.

Related literature

For a related structure, see: Tayebee *et al.* (2008). For the treatment of non-merohedral twins, see: Spek (2003).

Experimental

Crystal data $[Zn(C_5H_5N_3O_2)_2(H_2O)_2](NO_3)_2$ $M_r = 503.66$ Monoclinic, $P2_1/c$

a = 13.4676 (14) Åb = 9.7059 (9) Åc = 6.6682 (6) Å $\beta = 96.610 (3)^{\circ}$ $V = 865.84 (14) Å^{3}$ Z = 2Mo K α radiation

Data collection

Rigaku R-AXIS RAPID	
diffractometer	
Absorption correction: multi-scan	
(ABSCOR; Higashi, 1995)	
$T_{\rm min} = 0.580, \ T_{\rm max} = 1.000$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ 145 parameters $wR(F^2) = 0.175$ H-atom parameters constrainedS = 1.15 $\Delta \rho_{max} = 1.37$ e Å⁻³1983 reflections $\Delta \rho_{min} = -1.66$ e Å⁻³

 $\mu = 1.51 \text{ mm}^{-1}$

 $0.24 \times 0.21 \times 0.18 \; \rm mm$

8164 measured reflections

1983 independent reflections

1739 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.053$

Table 1	
Hydrogen-bond geometry (Å, °)	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1w-H1w1\cdots O1^{i}$ $O1w-H1w2\cdots O2^{ii}$ $N2-H2\cdots O3$ $N3-H31\cdots O4$ $N3-H32\cdots O5^{iii}$	0.82 0.82 0.88 0.88 0.88	2.17 1.99 1.86 2.14 2.33	2.895 (5) 2.752 (6) 2.703 (6) 2.981 (6) 2.994 (7)	148 154 161 161 133
Symmetry codes: $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}.$	(i) $-x + 1$,	$y - \frac{1}{2}, -z + \frac{3}{2};$	(ii) $x, -y +$	$\frac{3}{2}, z + \frac{1}{2};$ (iii)

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2064).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tayebee, R., Amini, V. & Khavasi, H. R. (2008). *Chin. J. Chem.* **26**, 500–504. Westrin S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2010). E66, m1466 [doi:10.1107/S1600536810042509]

(3-Aminopyrazin-4-ium-2-carboxylate- $\kappa^2 N^1$, O)diaquazinc(II) dinitrate

S. Gao and S. W. Ng

Comment

3-Aminopyrazine-2-carboxylic acid forms a number of aqua complexes with divalent transition metals in which the metal atom is N,O-chelated by the monoanion. In an attempt at the solution synthesis of the zinc derivative, the sodium ion used as a reactant is incorporated into the crystal structure (Tayebee *et al.*, 2008). In the present study, the attempt by a hydrothermal route yielded Zn(H₂O)₂(C₅H₅N₃O₂)₂ 2NO₃ (Scheme I, Fig. 1). The water-coordinated zinc atom in the salt is N,O-chelated by a zwitterionic aminopyraziniocarboxylate unit; the metal atom, which lies on a center of inversion, shows octahedral coordination. The nitrate ion interacts indirectly, through N–H…O hydrogen bonds. Adjacent cations and anions are connected by O–H…O hydrogen bonds into a three-dimensional network motif.

Experimental

Zinc nitrate hexahydrate (0.30 g, 1 mmol), 3-aminopyrazine-2-carboxylic acid (0.28 g, 2 mmol), and sodium hydroxide (0.08 g 2 mmol) were dissolved in a H₂O/DMF (12 ml, v/v = 2:1) solution. The mixture was sealed in a 25- ml Teflon-lined stainless steel bomb and held at 443 K for 3 d. The bomb was gradually cooled to room temperature, and yellow crystals were obtained after several days.

Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.93, N–H 0.88, O–H 0.82 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-1.5U(C,N,O). The crystal is a non-merohedral twin, with two minor components of 15.1 (1)% and 8.0 (1)%; *PLATON* (Spek, 2003) was used to separate the diffraction intensities into three domains. The final difference Fourier map had a peak at 0.92 Å from Zn1 and a hole at 0.98 Å from H1w2.

Figures

Fig. 1. Displacement ellipsoid plot of $Zn(H_2O)_2(C_5H_5N_3O_2)_2$ 2NO₃ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Unlabeled atoms are related to labeled atoms by 1 - *x*, 1 - *y*, 1 - *z*.

(3-Aminopyrazin-4-ium-2-carboxylate- $\kappa^2 N^1$,O)diaquazinc(II) dinitrate

Crystal data [Zn(C₅H₅N₃O₂)₂(H₂O)₂](NO₃)₂ M_r = 503.66

F(000) = 512 $D_x = 1.932 \text{ Mg m}^{-3}$

Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc *a* = 13.4676 (14) Å *b* = 9.7059 (9) Å c = 6.6682 (6) Å $\beta = 96.610 (3)^{\circ}$ $V = 865.84 (14) \text{ Å}^3$ Z = 2

Data collection

Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 7197 reflections
$\theta = 3.1 - 27.5^{\circ}$
$\mu = 1.51 \text{ mm}^{-1}$
<i>T</i> = 293 K
Prism, yellow
$0.24 \times 0.21 \times 0.18 \text{ mm}$

Rigaku R-AXIS RAPID diffractometer	1983 independent reflections
Radiation source: fine-focus sealed tube	1739 reflections with $I > 2\sigma(I)$
graphite	$R_{\text{int}} = 0.053$
Detector resolution: 10.000 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
ω scans	$h = -17 \rightarrow 17$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -11 \rightarrow 12$
$T_{\min} = 0.580, \ T_{\max} = 1.000$	$l = -8 \longrightarrow 8$
8164 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.175$	H-atom parameters constrained
<i>S</i> = 1.15	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0553P)^{2} + 4.4842P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1983 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
145 parameters	$\Delta \rho_{max} = 1.37 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -1.66 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.5000	0.5000	0.5000	0.0239 (3)
01	0.5443 (3)	0.7058 (4)	0.5390 (6)	0.0286 (8)
02	0.6686 (3)	0.8494 (4)	0.4874 (6)	0.0302 (8)
O3	1.0229 (3)	0.4552 (5)	0.2346 (9)	0.0472 (12)
O4	1.0421 (4)	0.6731 (5)	0.2591 (11)	0.0630 (17)
O5	1.1600 (3)	0.5475 (5)	0.1631 (8)	0.0452 (11)
O1W	0.5552 (3)	0.4400 (5)	0.8042 (6)	0.0388 (10)
H1W1	0.5111	0.3991	0.8552	0.058*
H1W2	0.5717	0.5089	0.8710	0.058*

N1	0.6477 (3)	0.4895 (4)	0.4259 (7)	0.0280 (10)
N2	0.8377 (3)	0.5065 (5)	0.3357 (8)	0.0288 (9)
H2	0.9001	0.5100	0.3091	0.035*
N3	0.8428 (3)	0.7410 (5)	0.3867 (8)	0.0331 (11)
H31	0.9044	0.7417	0.3544	0.040*
H32	0.8146	0.8183	0.4193	0.040*
N4	1.0755 (3)	0.5598 (5)	0.2176 (8)	0.0320 (10)
C1	0.6305 (4)	0.7331 (5)	0.4932 (8)	0.0235 (10)
C2	0.6923 (4)	0.6113 (5)	0.4370 (7)	0.0221 (9)
C3	0.7931 (4)	0.6243 (5)	0.3862 (8)	0.0245 (10)
C4	0.7906 (4)	0.3840 (6)	0.3245 (10)	0.0357 (12)
H4	0.8231	0.3057	0.2849	0.043*
C5	0.6951 (4)	0.3757 (6)	0.3717 (10)	0.0358 (13)
Н5	0.6625	0.2910	0.3664	0.043*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0173 (4)	0.0251 (4)	0.0306 (5)	-0.0034 (3)	0.0077 (3)	0.0000 (3)
01	0.0223 (17)	0.0259 (17)	0.039 (2)	0.0009 (14)	0.0117 (15)	-0.0037 (16)
O2	0.0281 (18)	0.0218 (17)	0.041 (2)	0.0008 (14)	0.0031 (16)	-0.0001 (15)
O3	0.031 (2)	0.026 (2)	0.089 (4)	-0.0043 (18)	0.024 (2)	-0.003 (2)
O4	0.048 (3)	0.025 (2)	0.124 (5)	0.001 (2)	0.045 (3)	-0.010 (3)
O5	0.023 (2)	0.040 (2)	0.075 (3)	-0.0003 (17)	0.020 (2)	-0.003 (2)
O1W	0.042 (2)	0.041 (2)	0.033 (2)	-0.0187 (19)	0.0033 (18)	0.0027 (18)
N1	0.023 (2)	0.024 (2)	0.039 (3)	-0.0002 (16)	0.0121 (18)	0.0015 (18)
N2	0.0153 (18)	0.037 (2)	0.035 (2)	0.0016 (17)	0.0058 (17)	0.0005 (19)
N3	0.023 (2)	0.031 (2)	0.046 (3)	-0.0061 (18)	0.011 (2)	0.000 (2)
N4	0.027 (2)	0.027 (2)	0.043 (3)	0.0000 (18)	0.0092 (19)	0.000 (2)
C1	0.022 (2)	0.025 (2)	0.023 (2)	0.0004 (18)	0.0022 (18)	-0.0004 (19)
C2	0.021 (2)	0.022 (2)	0.023 (2)	0.0012 (18)	0.0043 (18)	0.0022 (18)
C3	0.020 (2)	0.030 (3)	0.024 (2)	-0.0011 (18)	0.0035 (18)	0.000 (2)
C4	0.032 (3)	0.027 (3)	0.049 (3)	0.006 (2)	0.011 (3)	-0.003 (3)
C5	0.036 (3)	0.021 (2)	0.052 (4)	-0.001 (2)	0.013 (3)	-0.001 (2)

Geometric parameters (Å, °)

Zn1—O1	2.092 (4)	N1—C2	1.324 (6)
Zn1—O1 ⁱ	2.092 (4)	N1—C5	1.346 (7)
Zn1—N1 ⁱ	2.107 (4)	N2—C4	1.345 (7)
Zn1—N1	2.107 (4)	N2—C3	1.353 (7)
Zn1—O1w ⁱ	2.158 (4)	N2—H2	0.8800
Zn1—O1w	2.158 (4)	N3—C3	1.315 (7)
O1—C1	1.262 (6)	N3—H31	0.8800
O2—C1	1.242 (6)	N3—H32	0.8800
O3—N4	1.250 (6)	C1—C2	1.517 (7)
O4—N4	1.232 (7)	C2—C3	1.442 (7)
O5—N4	1.240 (6)	C4—C5	1.362 (8)

O1W—H1W1	0.8200	C4—H4	0.9300
O1W—H1W2	0.8200	С5—Н5	0.9300
O1—Zn1—O1 ⁱ	180.0	C4—N2—H2	118.6
O1—Zn1—N1 ⁱ	100.84 (15)	C3—N2—H2	118.6
$O1^{i}$ —Zn1—N1 ⁱ	79.16 (15)	C3—N3—H31	120.0
O1—Zn1—N1	79.16 (15)	C3—N3—H32	120.0
O1 ⁱ —Zn1—N1	100.84 (15)	H31—N3—H32	120.0
N1 ⁱ —Zn1—N1	180.0	O4—N4—O5	121.5 (5)
O1—Zn1—O1W ⁱ	85.51 (16)	O4—N4—O3	118.6 (5)
$O1^{i}$ —Zn1—O1W ⁱ	94.49 (16)	O5—N4—O3	119.9 (5)
$N1^{i}$ —Zn1—O1 W^{i}	88.56 (18)	O2—C1—O1	126.4 (5)
$N1$ — $Zn1$ — $O1W^{i}$	91.44 (18)	O2—C1—C2	117.4 (4)
O1—Zn1—O1W	94.49 (16)	O1—C1—C2	116.2 (4)
$O1^{i}$ —Zn1—O1W	85.51 (16)	N1—C2—C3	119.9 (4)
$N1^{i}$ Zn1 $O1W$	91.44 (18)	N1—C2—C1	116.8 (4)
N1—Zn1—O1W	88.56 (18)	C3—C2—C1	123.2 (4)
$O1W^{i}$ Zn1 $O1W$	180.0	N3—C3—N2	119.2 (4)
C1—O1—Zn1	115.3 (3)	N3—C3—C2	124.6 (5)
Zn1—O1W—H1W1	109.5	N2—C3—C2	116.2 (5)
Zn1—O1W—H1W2	109.5	N2—C4—C5	119.4 (5)
H1W1—O1W—H1W2	109.5	N2—C4—H4	120.3
C2—N1—C5	121.5 (5)	С5—С4—Н4	120.3
C2—N1—Zn1	112.2 (3)	N1—C5—C4	120.2 (5)
C5—N1—Zn1	126.3 (4)	N1—C5—H5	119.9
C4—N2—C3	122.8 (4)	С4—С5—Н5	119.9
N1 ⁱ —Zn1—O1—C1	-176.2 (4)	C5—N1—C2—C1	178.1 (5)
N1—Zn1—O1—C1	3.8 (4)	Zn1—N1—C2—C1	-1.6 (6)
O1W ⁱ —Zn1—O1—C1	-88.5 (4)	O2—C1—C2—N1	-174.0 (5)
O1W—Zn1—O1—C1	91.5 (4)	O1-C1-C2-N1	5.0 (7)
O1—Zn1—N1—C2	-0.9 (4)	O2—C1—C2—C3	2.6 (7)
O1 ⁱ —Zn1—N1—C2	179.1 (4)	O1—C1—C2—C3	-178.3 (5)
O1W ⁱ —Zn1—N1—C2	84.2 (4)	C4—N2—C3—N3	-177.5 (6)
O1W—Zn1—N1—C2	-95.8 (4)	C4—N2—C3—C2	2.7 (8)
O1—Zn1—N1—C5	179.4 (5)	N1—C2—C3—N3	178.0 (5)
O1 ⁱ —Zn1—N1—C5	-0.6 (5)	C1—C2—C3—N3	1.4 (8)
O1W ⁱ —Zn1—N1—C5	-95.5 (5)	N1—C2—C3—N2	-2.2 (7)
O1W—Zn1—N1—C5	84.5 (5)	C1—C2—C3—N2	-178.8 (5)
Zn1—O1—C1—O2	173.2 (4)	C3—N2—C4—C5	-2.2 (10)
Zn1—O1—C1—C2	-5.7 (6)	C2—N1—C5—C4	-0.7 (10)
C5—N1—C2—C3	1.3 (8)	Zn1—N1—C5—C4	179.0 (5)
Zn1—N1—C2—C3	-178.4 (4)	N2-C4-C5-N1	1.1 (10)
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1w—H1w1···O1 ⁱⁱ	0.82	2.17	2.895 (5)	148
O1w—H1w2···O2 ⁱⁱⁱ	0.82	1.99	2.752 (6)	154
N2—H2…O3	0.88	1.86	2.703 (6)	161
N3—H31…O4	0.88	2.14	2.981 (6)	161
N3—H32···O5 ^{iv}	0.88	2.33	2.994 (7)	133

Symmetry codes: (ii) -x+1, y-1/2, -z+3/2; (iii) x, -y+3/2, z+1/2; (iv) -x+2, y+1/2, -z+1/2.

